Control of
نویسندگان
چکیده
Title of Dissertation: Control of Smart Actuators Xiaobo Tan, Doctor of Philosophy, 2002 Dissertation directed by: Professor John S. Baras Professor P. S. Krishnaprasad Department of Electrical and Computer Engineering Hysteresis in smart materials hinders wider applicability of such materials in actuators and sensors. In this dissertation we study modeling, identification and control of hysteresis in smart actuators. While the approaches are applicable to control of a wide class of smart actuators, we illustrate the ideas through the example of controlling a magnetostrictive actuator. Hysteresis exhibited by magnetostrictive actuators is rate-independent when the input frequency is low and we can model it by a Preisach operator. It becomes rate-dependent when the input frequency gets high due to the eddy current effect and the magnetoelastic dynamics. In this case, we propose a new dynamic hysteresis model, consisting of a Preisach operator coupled to an ordinary differential equation in an unusual way. We establish its well-posedness and study its various system-theoretic properties. Existence of periodic solutions under periodic forcing is proved. Algorithms for simulation of the model are also studied. Parameter identification methods for both the Preisach operator and the dynamic model are investigated. We pursue the problem of hysteresis control along three different but connected paths: inverse control, robust control and optimal control. The idea of inverse control is to construct an inverse operator to cancel out the hysteretic nonlinearity. Efficient inversion schemes are proposed for both the Preisach model and the dynamic hysteresis model. We also formulate and study a novel inversion problem, called the value inversion problem, and apply it to micro-positioning control. Inverse compensation is open-loop in nature and therefore susceptible to model uncertainties and to errors introduced in the inverse schemes. We propose a robust control framework for smart actuators by combining inverse compensation with robust control techniques. We present systematic controller design methods which guarantee robust stability and robust trajectory tracking while taking actuator saturation into account. Finally we study optimal control of hysteresis in smart actuators based on a low dimensional hysteresis model. We characterize the value function as the (unique) viscosity solution to a Hamilton-Jacobi-Bellman equation of a hybrid form, and provide a numerical scheme to approximate the solution. Control of Smart Actuators
منابع مشابه
Adaptive Voltage-based Control of Direct-drive Robots Driven by Permanent Magnet Synchronous Motors
Tracking control of the direct-drive robot manipulators in high-speed is a challenging problem. The Coriolis and centrifugal torques become dominant in the high-speed motion control. The dynamical model of the robotic system including the robot manipulator and actuators is highly nonlinear, heavily coupled, uncertain and computationally extensive in non-companion form. In order to overcome thes...
متن کاملHybrid Concepts of the Control and Anti-Control of Flexible Joint Manipulator
This paper presents a Gaussian radial basis function neural network based on sliding mode control for trajectory tracking and vibration control of a flexible joint manipulator. To study the effectiveness of the controllers, designed controller is developed for tip angular position control of a flexible joint manipulator. The adaptation laws of designed controller are obtained based on sliding m...
متن کاملHybrid Control to Approach Chaos Synchronization of Uncertain DUFFING Oscillator Systems with External Disturbance
This paper proposes a hybrid control scheme for the synchronization of two chaotic Duffing oscillator system, subject to uncertainties and external disturbances. The novelty of this scheme is that the Linear Quadratic Regulation (LQR) control, Sliding Mode (SM) control and Gaussian Radial basis Function Neural Network (GRBFNN) control are combined to chaos synchronization with respect to extern...
متن کاملAnalysis of Speed Control in DC Motor Drive Based on Model Reference Adaptive Control
This paper presents fuzzy and conventional performance of model reference adaptive control(MRAC) to control a DC drive. The aims of this work are achieving better match of motor speed with reference speed, decrease of noises under load changes and disturbances, and increase of system stability. The operation of nonadaptive control and the model reference of fuzzy and conventional adaptive contr...
متن کاملManaged Pressure Drilling Using Integrated Process Control
Control of wellbore pressure during drilling operations has always been important in the oil industry as this can prevent the possibility of well blowout. The present research employs a combination of automatic process control and statistical process control for the first time for the identification, monitoring, and control of both random and special causes in drilling operations. To this end, ...
متن کاملLoad Frequency Control in Two Area Power System Using Sliding Mode Control
In this article, the sliding mode control of frequency load control of power systems is studied. The study areaconsists of a system of water and heat. First, a mathematical model of the proposed system disturbances ismade and then sliding control mode for frequency load control is provided. By the system simulation andsliding mode control, it can be shown that the damping of oscillations is wel...
متن کامل